4 research outputs found

    Three problems on well-partitioned chordal graphs

    Get PDF
    In this work, we solve three problems on well-partitioned chordal graphs. First, we show that every connected (resp., 2-connected) well-partitioned chordal graph has a vertex that intersects all longest paths (resp., longest cycles). It is an open problem [Balister et al., Comb. Probab. Comput. 2004] whether the same holds for chordal graphs. Similarly, we show that every connected well-partitioned chordal graph admits a (polynomial-time constructible) tree 3-spanner, while the complexity status of the Tree 3-Spanner problem remains open on chordal graphs [Brandstädt et al., Theor. Comput. Sci. 2004]. Finally, we show that the problem of finding a minimum-size geodetic set is polynomial-time solvable on well-partitioned chordal graphs. This is the first example of a problem that is NP -hard on chordal graphs and polynomial-time solvable on well-partitioned chordal graphs. Altogether, these results reinforce the significance of this recently defined graph class as a tool to tackle problems that are hard or unsolved on chordal graphs.acceptedVersio

    b-Coloring Parameterized by Clique-Width

    No full text
    We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This unifies and extends nearly all previously known polynomial-time results on graph classes, and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameterizations of this problem. We show that the problem is FPT when parameterized by the vertex cover number on general graphs, and on chordal graphs when parameterized by the number of colors. Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring problem within the same runtime bound. The running times of the clique-width based algorithms for b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis

    Three problems on well-partitioned chordal graphs

    No full text
    In this work, we solve three problems on well-partitioned chordal graphs. First, we show that every connected (resp., 2-connected) well-partitioned chordal graph has a vertex that intersects all longest paths (resp., longest cycles). It is an open problem [Balister et al., Comb. Probab. Comput. 2004] whether the same holds for chordal graphs. Similarly, we show that every connected well-partitioned chordal graph admits a (polynomial-time constructible) tree 3-spanner, while the complexity status of the Tree 3-Spanner problem remains open on chordal graphs [Brandstädt et al., Theor. Comput. Sci. 2004]. Finally, we show that the problem of finding a minimum-size geodetic set is polynomial-time solvable on well-partitioned chordal graphs. This is the first example of a problem that is NP -hard on chordal graphs and polynomial-time solvable on well-partitioned chordal graphs. Altogether, these results reinforce the significance of this recently defined graph class as a tool to tackle problems that are hard or unsolved on chordal graphs

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore